Developmental brain trajectories in children with ADHD and controls: A longitudinal neuroimaging study.


Background: The symptom profile and neuropsychological functioning of individuals with Attention Deficit/Hyperactivity Disorder (ADHD), change as they enter adolescence. It is unclear whether variation in brain structure and function parallels these changes, and also whether deviations from typical brain development trajectories are associated with differential outcomes. This paper describes the Neuroimaging of the Children’s Attention Project (NICAP), a comprehensive longitudinal multimodal neuroimaging study. Primary aims are to determine how brain structure and function change with age in ADHD, and whether different trajectories of brain development are associated with variations in outcomes including diagnostic persistence, and academic, cognitive, social and mental health outcomes. Methods/Design: NICAP is a multimodal neuroimaging study in a community-based cohort of children with and without ADHD. Approximately 100 children with ADHD and 100 typically developing controls will be scanned at a mean age of 10 years (range; 9-11years) and will be re-scanned at two 18-month intervals (ages 11.5 and 13 years respectively). Assessments include a structured diagnostic interview, parent and teacher questionnaires, direct child cognitive/executive functioning assessment and magnetic resonance imaging (MRI). MRI acquisition techniques, collected at a single site, have been selected to provide optimized information concerning structural and functional brain development. Discussion: This study will allow us to address the primary aims by describing the neurobiological development of ADHD and elucidating brain features associated with differential clinical/behavioral outcomes. NICAP data will also be explored to assess the impact of sex, ADHD presentation, ADHD severity, comorbidities and medication use on brain development trajectories. Establishing which brain regions are associated with differential clinical outcomes, may allow us to improve predictions about the course of ADHD.